Remote Triggering Effect of a Tropical Cyclone in the Bay of Bengal on a Heavy Rainfall Event in Subtropical East Asia

<u>Sho Arakane</u>¹, Huang-Hsiung Hsu¹, Chia-Ying Tu¹, Hsin-Chien Liang¹, Zheng-Yu Yan¹, and Shian-Jiann Lin²

Temp. (°C, Himawari-8 AHI CH13), 00:00 UTC 30 May 2017 RCEC, Academia Sinica, ²GFDL

Introduction

- Torrential frontal rainfall occurred over northern Taiwan on June 1, 2017
- Amount of precipitation: 600mm/12hr in northern Taiwan
- The heavy rainfall induced severe floods and mudslides

→ three people were killed and two people were missing Source: twitter.com (@SaiShouYuu)

Introduction

Agenda

1. Introduction

- 2. Overview (satellite data, JRA-55 with 1.25° res.)
- 3. Numerical experiment
 - 1. Model setting
 - 2. Validation with observation and JRA-55
 - 3. Comparison with the sensitivity experiment
- 4. Conclusion with schematic diagram

Overview (rainfall)

Red-colored line: wind shift line (WSL)

 \rightarrow Leading edge of airmass

3-hour Precip. [GSMaP, mm (3h)⁻¹], 850hPa Wind [JRA55, m s⁻¹]

Overview (upper and low-level fields)

Overview (frontogenesis)

18Z01JUN2017 (JRA55)

The front was enhanced by the divergence and deformation terms along the **WSL**

The subsiding northerly originated from the upperlevel trough intruded into Taiwan region \rightarrow The confluence of the LLJ and the subsiding northerly created the front near Taiwan

25

Numerical simulation (Setting)

- Model: NCEP FV3 GFS
- Horizontal resolution: C768 (approx. 12.5 km)
- Vertical resolution: 64 levels (~0.3 hPa)
- Cumulus parameterization: simplified Arakawa–Schubert
- Microphysics: single-moment 6-class scheme
- Initial time: 0000 UTC on May 29 (88h before the rainfall)

• Control and sensitivity (no TC) exps.

Result (Obs. v Mora exp.)

- The subsiding northerly originated from the upper-level trough
- $\checkmark\,$ The strong southwesterly LLJ
- ✓ The large moisture convergence around Taiwan

Result (Obs. v Mora exp.)

18Z01JUN2017 (JRA55)

- ✓ The front is enhanced by the divergence and deformation effects along the WSL
- ✓ Intrusion of the subsiding northerly
- ✓ Vertically tilted structure of deformation effect for frontogenesis

Result (Mora exp. v noMora exp.)

Result (Mora exp. v noMora exp.)

SWEP Workshop@RCEC

15

Schematic Diagram

SWEP Workshop@RCEC

Conclusion

- ✓ TC Mora remotely and extensively affected circulation over East Asia
- ✓ The effect on circulation enhanced the subsiding northerly to the north of Taiwan and the southwesterly over the South China Sea to the southwest of Taiwan
- ✓ The strong northerly moved cooler air mass farther southward in the north of Taiwan and promoted the enhancement of low-level convergence
- ✓ The strengthened and widened low-level jet over the South China Sea transported moisture-laden air toward Taiwan and enhanced low-level moisture convergence near Taiwan
- ✓ The stronger confluent zone induced by the strengthening of the warm moist southerly and cool dry northerly resulted in a strong baroclinic zone (front), which shifted further southward toward northern Taiwan through the deformation and divergence processes
- ✓ The enhanced low-level moisture convergence and frontal system generated heavy rainfall over northern Taiwan.

SWEP Workshop@RCEC

SWEP Workshop@RCEC

30

10

[m s⁻¹]

Ensemble simulation

One member

Frontal budget (Mora – noMora)

Note: different smoothing were applied

Frontal budget (Mora – noMora)

Note: different smoothing were applied

SWEP Workshop@RCEC