蔡宜君Tsai, I-Chun

研究興趣

氣膠微物理參數法的發展與應用、氣膠與雲交互作用、氣候與化學交互作用、雲物理與大氣物理化學

 

代表著作

Tsai, I-C.*, C.-Y. Lee, S.-C. C. Lung, C.-W. Su, 2021: Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality, Science of the Total Environment, 782(2021), 146571, ISSN 0048-9697.
Lee, W.-L.*, Y.-C. Wang, C.-J. Shiu, I-C. Tsai, C.-Y. Tu, Y.-Y. Lan, J.-P. Chen, H.-L. Pan, and H.-H. Hsu, 2020: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904.
Zhang, L., T.-M. Fu*, H. Tian, Y. Ma, J.-P. Chen, T.-C. Tsai, I-C. Tsai, Z. Meng, X. Yang. 2020: Anthropogenic Aerosols Significantly Reduce Mesoscale Convective System Occurrences and Precipitation over Southern China in April, Geophysical Research Letters. 47, e2019GL086204.
Wu, C.-H.*, I-C. Tsai, P.-C. Tsai and Y.-S. Tung, 2019: Large-Scale Seasonal Control of Air Quality in Taiwan, Atmospheric Environment, 214, 116868.
Huang C.-C., S.-H. Chen*, Y.-C. Lin, K. Earl, T. Matsui, H.-H. Lee, I-C. Tsai, J.-P. Chen, C.-T. Cheng, 2019: Impacts of Dust-Radiation versus Dust-Cloud Interactions on the Development of a Modeled Mesoscale Convective System over North Africa.  Monthly Weather Review, 147, 3301–3326.
Tsai, I-C.*, W.-Y. Chen, J.-P. Chen, and M.-C. Liang, 2019: Kinetic mass-transfer calculation of water isotope fractionation due to cloud microphysics in a regional meteorological model, Atmos. Chem. Phys., 19, 1753-1766.
Lung, S.-C.*, S.-W. Chou, J.-P. Chen, P.-C. Wen, H.-J. J. Su, I-C. Tsai, and Y.-S. Shen, 2018: Science Plan of “Climate Change and Health Adaptation”, Journal of Taiwan Land Research, 21, 2, 209-239 (in Chinese).
Tsai, I-C.*, W.-C. Wang, H.-H. Hsu, and W.-L. Lee, 2016: Aerosol effects on summer monsoon over Asia during 1980s and 1990s, J. Geophys. Res. Atmos., 121, 1176111776,.
Chen, J.-P*, I-J. Chen and I-C. Tsai, 2016: Dynamic feedback of aerosol effect on the East Asian summer monsoon. Journal of Climate, 29(17):6137-6149.
Li, N., J.-P. Chen*, I-C. Tsai, Q. He, S.-Y. Chi, Y.-C. Lin, and T.-M. Fu, 2016: Potential impacts of electric vehicles on air quality in Taiwan.  Science of the Total Environment, 566-567(2016), 919-928.
Tsai, I-C., J.-P. Chen*, C. S.-C. Lung, N. Li, W.-N. Chen, T.-M. Fu, C.-C. Chang, and G.-D. Hwang, 2015: Sources and formation pathways of organic aerosol in a subtropical metropolis during summer.  Atmospheric Environment, 117, 51-60.
Tsai, I-C., J.-P. Chen*, Y.-C. Lin, C C.-K. Chou, and W.-N. Chen, 2015: Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts. Journal of Geophysical Research: Atmospheres, 120, 9, 4313-4233, doi:10.1002/2014JD022899.
Chen, J.-P.*, C.-E. Yang and I-C. Tsai, 2015: Estimation of foreign versus domestic contributions to Taiwan's air pollution. Atmospheric Environment, 112,9-19, doi:10.1016/j.atmosenv.2015.02.022.
Lin, Y.-C., J.-P. Chen*, T.-Y. Ho and I-C. Tsai, 2015: Atmospheric Iron deposition in the Northwestern Pacific Ocean and its Adjacent Marginal Seas: the Importance of Coal Burning. Global Biogeochemical Cycles, 29, 139159, doi:10.1002/2013GB004795.
 

重要研究與突破

發展區域大氣同位素模式,討論同位素分化過程的影響因子,並利用同位素模式討論鋒面系統的水循環。敏感度測試及模擬結果顯示,鋒面系統裡的同位素分化過程並非平衡過程,不能僅以傳統熱力平衡法處理之,需以氣體動立法方式計算以減少誤差。另外由敏感度測試顯示下邊界及側邊界對同位素含量的影響明顯,需要更多觀測資料做為邊界資料的參考(Tsai et al., 2019)。
分析地球系統模式CESM百年模擬結果,討論氣膠及溫室氣體對東亞地區夏季季風的影響,模擬結果顯示1980年代至1990年代所增加的人為源氣膠,可導致200hPa噴流南移,使夏季季風減弱,而若將溫室氣體的變化也考慮進來,雖然全球平均溫度上升,但氣膠造成東亞夏季季風減弱的現象,仍然存在(Tsai et al., 2016)。
改進美國環保署發展之區域空氣品質模式CMAQ中二次有機氣膠產生機制,並搭配中研院環變中心於台北市都會區與郊區進行之採樣觀測資料,瞭解台北地區夏季有機氣膠生成及傳送機制。由一週的模擬及觀測資料顯示,液相化學反應機制對台北地區二次有機氣膠濃度貢獻超過50%,而綜觀環境、局部環流及邊界層高度等條件,對有機氣膠傳送及日夜變化有很大影響(Tsai et al., 2015a)。
應用SNAP參數法,發展不同種類氣膠因碰撞而混合的機制,加入區域空氣品質模式CMAQ,討論沙塵事件期間,氣膠經碰撞混合的機制變成內在混合後,可改變氣膠質量、數量及表面積的時空分布特徵、降低單次散射反照率(SSA)、增加氣膠作為雲凝結核的能力以及在不同溫度區間,增加或減少其作為冰核的能力(Tsai et al., 2015b)。
 
  • (02) 2787-5935

  • ictsai

  • ACCRL

研究人員登入